Przejdź do treści Przejdź do stopki
Pracownicy – wydarzenia

Pracownicy – wydarzenia

Multiscale Modeling and Simulations in Material Science: Atomistic and Molecular Simulations using First Principles Derived Potentials

Akademickie Centrum Materiałów i Nanotechnologii AGH zaprasza na seminarium z cyklu Krakow Condensed Matter Seminar and ACMiN Seminar, które odbędzie się 8 marca 2023 r. o godz. 9.00 w formie hybrydowej.

Wykład zatytułowany Multiscale Modeling and Simulations in Material Science: Atomistic and Molecular Simulations using First Principles Derived Potentials wygłosi dr José Manuel Vicent-Luna (Eindhoven University of Technology, Holandia).

Udział

  • stacjonarny: ACMiN (ul. Kawiory 30, bud. D-16, II piętro, sala audytoryjna 1.02A)
  • zdalny: platforma MS Teams (link)

Streszczenie

Computational modeling has proven to be a valuable tool for describing materials properties for a wide range of applications. It can provide essential atomistic and microscopic insights into the fundamental behavior of materials. There are diverse computational methods, and each has its own advantages and limitations for investigating processes at different sizes and time scales. Among them, density functional theory (DFT) is the golden standard in materials science in predicting material properties. The high computational cost of DFT calculations limits the study to small systems and short timescales; however, the most challenging advances in materials science often require studying larger systems. Classical simulations using conventional force fields seem to be an "in part" solution to these limitations; however, they suffer from other drawbacks, such as the inability to simulate electrons and chemical reactions that are essential for many applications.
In recent years, computational techniques bridging the gap between quantum and classical simulations have proved to be a promising alternative for solving many challenges. Examples of those are density functional tight binding methods, reactive and polarizable force fields, and machine learned potentials. The main drawback of these techniques regarding their predictive power is that one needs a realistic force field or energy parameters set. However, parametrizing accurate force fields could be a complex task. Herein, I summarize the application and optimization of these techniques for studying semiconductor materials, such as inorganic perovskites and covalent organic frameworks. I will discuss and compare the basic principles, applicability, and limitations of these "bridge-the-gap" simulation techniques for obtaining electronic, structural, energetic, and dynamical properties of those crystalline materials.

UWAGA

W tym semestrze seminarium dotychczas organizowane przez Akademickie Centrum Materiałów i Nanotechnologii będzie połączone z Krakow Condensed Matter Seminar (zwane wcześniej Środowiskowym Seminarium Fizyki Ciała Stałego). Począwszy od 1 marca 2023 r. spotkania odbywać się będą w środy o godz. 9.00 i prowadzone będą hybrydowo: stacjonarnie (w siedzibie ACMiN przy ul. Kawiory 30, bud. D-16, sala audytoryjna 1.02A na II piętrze) oraz z transmisją online na platformie MS Teams.

Stopka